SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "db:Swepub ;pers:(Jantsch Axel);pers:(Chen Xiaowen);pers:(Naeem Abdul)"

Sökning: db:Swepub > Jantsch Axel > Chen Xiaowen > Naeem Abdul

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jantsch, Axel, et al. (författare)
  • Memory Architecture and Management in an NoC Platform
  • 2011. - 1
  • Ingår i: Scalable Multi-core Architectures. - New York, NY : Springer. - 9781441967770 ; , s. 3-28
  • Bokkapitel (refereegranskat)abstract
    • The memory organization and the management of the memory space is a critical part of every NoC based platform design. We propose a Data Management Engine (DME), that is a block of programmable hardware and part of every processing element. It off-loads the processing element (CPU, DSP, etc.) by managing the memory space, memory access and the communication over the on-chip network. The DME’s main functions are virtual address translation, private and shared memory management, cache coherence protocol, support for memory consistency models, synchronization and protection mechanisms for shared memory communication. The DME is fully programmable and configurable thus allowing for customized support for high level data management functions such as dynamic memory allocation and abstract data types. This chapter describes the main concepts, design and functionality of the DME and presents case studies illustrating its usage and performance.
  •  
2.
  • Naeem, Abdul, et al. (författare)
  • Realization and Performance Comparison of Sequential and Weak Memory Consistency Models in Network-on-Chip based Multi-core Systems
  • 2011
  • Ingår i: Proceedings of 16th ACM/IEEE Asia and South Pacific Design Automation Conference(ASP-DAC) 2011. - : IEEE Press. ; , s. 154-159
  • Konferensbidrag (refereegranskat)abstract
    • This paper studies realization and performance comparison of the sequential and weak consistency models in the network-on-chip (NoC) based distributed shared memory (DSM) multi-ore systems. Memory consistency constrains the order of shared memory operations for the expected behavior of the multi-core systems. Both the consistency models are realized in the NoC based multi-core systems. The performance of the two consistency models are compared for various sizes of networks using regular mesh topologies and deflection routing algorithm. The results show that the weak consistency improves the performance by 46.17% and 33.76% on average in the code and consistency latencies over the sequential consistency model, due to relaxation in the program order, as the system grows from single core to 64 cores.
  •  
3.
  • Naeem, Abdul, et al. (författare)
  • Realization and Scalability of Release and Protected Release Consistency Models in NoC based Systems
  • 2011
  • Ingår i: Proceeding of 14th Euromicro Conference on Digital System Design, 2011. - Oulu : IEEE Computer Society. - 9781457710483 ; , s. 47-54
  • Konferensbidrag (refereegranskat)abstract
    • This paper studies the realization and scalability of release and protected release consistency models in Network-on-Chip (NoC) based Distributed Shared Memory (DSM) multi-core systems. The protected release consistency (PRC) model is proposed as an extension of the release consistency (RC) model and provides further relaxation in the shared memory operations. The realization schemes of RC and PRC models use a transaction counter in each node of the NoC based multi-core (McNoC) systems. Further, we study the scalability of these RC and PRC models and evaluate their performance in the McNoC platform. A configurable NoC based platform with 2D mesh topology and deflection routing algorithm is used in the tests. We experiment both with synthetic and application workloads. The performance of the RC and PRC models are compared using sequential consistency (SC) as the baseline. The experiments show that the average code execution time for the PRC model in 8x8 network (64 cores) is reduced by 30.5% over SC, and by 6.5% over RC model. Average data execution time in the 8x8 network for the PRC model is reduced by almost 37% over SC and by 8.8% over RC. The increase in area for the PRC of RC is about 880 gates in the network interface ( 1.7% ).
  •  
4.
  • Naeem, Abdul, et al. (författare)
  • Scalability of Relaxed Consistency Models in NoC based Multicore Architectures
  • 2009
  • Ingår i: SIGARCH Computer Architecture News. - : ACM Press. - 0163-5964 .- 1943-5851. ; 37:5, s. 8-15
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This paper studies realization of relaxed memory consistency models in the network-on-chip based distributed shared memory (DSM) multi-core systems. Within DSM systems, memory consistency is a critical issue since it affects not only the performance but also the correctness of programs. We investigate the scalability of the relaxed consistency models (weak, release consistency) implemented by using transaction counters. Our experimental results compare the average and maximum code, synchronization and data latencies of the two consistency models for various network sizes with regular mesh topologies. The observed latencies rise for both the consistency models as the network size grows. However, the scaling behaviors are different. With the release consistency model these latencies grow significantly slower than with the weak  onsistency due to better optimization potential by means of overlapping, reordering and program order relaxations. The release consistency improves the performance by 15.6% and 26.5% on average in the code and consistency latencies over the weak consistency model for the specific application, as the system grows from single core to 64 cores. The latency of data transactions  rows 2.2 times faster on the average with a weak consistency model than with a release consistency model when the system scales from single core to 64 cores.
  •  
5.
  • Naeem, Abdul, et al. (författare)
  • Scalability of Weak Consistency in NoC based Multicore Architectures
  • 2010
  • Ingår i: IEEE INT SYMP CIRC SYST PROC. - New York : IEEE. - 9781424453085 ; , s. 3497-3500
  • Konferensbidrag (refereegranskat)abstract
    • In Multicore Network-on-Chip, it is preferable to realize distributed but shared memory (DSM) in order to reuse the huge amount of legacy code and easy programming. Within DSM systems, memory consistency is a critical issue since it affects not only performance but also the correctness of programs. In this paper, we investigate the scalability of the weak consistency model, which may be implemented using a transaction counter. The experimental results compare synchronization latencies for various network sizes, topologies and lock positions in the network. Average synchronization latency rises exponentially for mesh and torus topologies as the network size grows. However, torus improves the synchronization latency in comparison to mesh. For mesh topology network average synchronization latency is also slightly affected by the lock position with respect to the network center.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
konferensbidrag (3)
tidskriftsartikel (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lu, Zhonghai (5)
Zhang, Yuang (1)
Penolazzi, Sandro (1)
Lärosäte
Kungliga Tekniska Högskolan (5)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Teknik (3)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy